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Discretizing Transient Current Densities in the Maxwell Equations ∗

Mark L. Stowell, Daniel A. White †

ABSTRACT
We will briefly discuss a technique for applying tran-

sient volumetric current sources in full-wave, time-domain
electromagnetic simulations which avoids the need for
divergence cleaning. The method involves both “edge-
elements” and “face-elements” in conjunction with a
particle-in-cell scheme to track the charge density. Re-
sults from a realistic, 6.7 million element, 3D simulation
are shown. While the authors may have a finite element
bias the technique should be applicable to finite difference
methods as well.

INTRODUCTION

The Maxwell Equations
The Maxwell Equations with a current density source

term can be written

∂

∂t
~D = ∇× ~H − ~J

∂

∂t
~B = −∇× ~E

where
~D = ε ~E and ~B = µ ~H

These equations are commonly discretized using “edge-
elements”, or discrete 1-forms, for the electric field and
“face-elements”, or discrete 2-forms, for the magnetic flux
density. This scheme requires that ~J also be approximated
with edge-elements, which works quite well in many situa-
tions. However, this scheme does have certain drawbacks.

One difficulty with 1-form current densities is that they
can spread through material interfaces into non-physical re-
gions. For example, consider a vacuum region abutting a
weak conductor which contains a constant current density.
What value for ~J should be applied to the edges which are
shared between these two regions? If the constant ~J value
is used, then the conducting region will contain the correct
value but the vacuum region will also contain a non-zero
current density. If a value of zero is applied on these edges,
then the vacuum region will correctly have zero current but
the conductor will contain less current density than desired.
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Another difficulty, and the one we will focus on, arises if
the current density is transient and the primary interest is to
determine how a cavity will resonate after a current pulse
passes through it. The problem here is that the continuity
equation for the electric charge,

∂ρ

∂t
+∇· ~J = 0,

is only weakly satisfied. Therefore, current densities can,
and often do, leave behind non-physical charge densities
after they pass through the computational mesh. These
charge densities can, in turn, produce a non-physical, static,
electric field which not only adds unexpected, mesh depen-
dent, features to field plots but can also reduce the accuracy
of the meaningful portion of the solution.

Integrating the charge continuity equation over time we
obtain

ρ(tb)− ρ(ta) = −
∫ tb

ta

∇· ~Jdt.

Assuming ta and tb are chosen such that ~J is everywhere
equal to zero before ta and after tb with no charges being
left behind anywhere within the problem domain we would
have ρ(ta) = ρ(tb) = 0 and so∫ tb

ta

∇· ~Jdt = 0.

This is the constraint that we hope to satisfy. The accuracy
with which this can be accomplished will hinge on our abil-
ity to accurately represent the divergence of the vector flux
density ~J .

Discrete Differential Forms
Differential Forms provide a general mathematical for-

malism to describe not only Div, Grad, and Curl but also in-
tegral relationships like the fundamental theorem of calcu-
lus, Kelvin-Stokes theorem, and the Divergence theorem.
For example these three theorems can each be described by
the generalized Stokes’ theorem:∫

Ω

dω =
∮

∂Ω

ω (1)

Where “ω” is a differential form and “d ” is the exterior
derivative appropriate for that form type. Specifically, if ω
is a 1-form (a standard vector field), this expression states
that ∫

Σ

∇×ω ·~n dA =
∮

∂Σ

ω ·d~r (2)



which is the classical Kelvin-Stokes theorem. Another im-
portant characteristic of differential forms is that for any
k-form, ω, its exterior derivative, dω, is a (k+1)-form.

Form Field Space Meaning of DoFType Type

0 Scalar H(Grad) Value
at Point

1 Vector H(Curl) Path Integral
Along Edge

2 Pseudo H(Div) Surface Integral
Vector Over Face

3 Scalar
L2

Volume Integral
Density Over Cell

Table 1: This table lists the type of field that each form type
is best suited for, the Hilbert space that the basis functions
belong to, and how the degrees of freedom are computed.

Discrete Differential Forms [1][2], see Table 1, are fi-
nite element basis functions designed to satisfy the same
differential and integral relations as their continuous coun-
terparts. To achieve this the degrees of freedom of a k-form
are associated with topological entities of dimension k: 0-
forms are associated with nodes, 1-forms with edges, etc..
The value assigned to a degree of freedom (DoF) is the inte-
gral of the field over the corresponding entity: 0-form DoFs
are point-wise evaluations of the field at the nodes, 1-form
DoFs are line integrals along edges, etc.. These degree of
freedom assignments make certain integrals trivial to com-
pute. For example the surface integral of a 2-form field can
simply be computed by summing up the DoF values from
a series of faces approximating the surface of interest.

Form Field Exterior Weak
Type Type Derivative Derivative

0 Scalar ∇ 7→ T01 None

1 Vector ∇×7→ T12 ∇· 7→M−1
0 TT

01M1

2 Pseudo ∇· 7→ T23 ∇×7→M−1
1 TT

12M2Vector

3 Scalar None ∇ 7→M−1
2 TT

23M3Density

Table 2: This table lists the discrete derivative operators
appropriate for each form type. WhereMp is a p-form mass
matrix and Tpq is a topological derivative matrix acting on
p-forms and producing q-forms.

Certain derivative operators, see Table 2, are also quite
simple to apply. This stems from the generalized Stokes’
theorem, equation (1). Consider the Curl of a 1-form, equa-
tion (2) shows that the 2-form DoF of∇×ω on a particular
face is simply a linear combination of the 1-form DoFs of

ω which form the boundary of that face. For first order
basis functions the coefficients are just ±1. These coeffi-
cients are chosen to produce the correct orientation of the
path for the line integral. In fact the Gradient of a 0-form,
the Curl of a 1-form, and the Divergence of a 2-form can
all be computed in this manner. These derivatives only re-
quire knowledge of the topology of the mesh and not its
geometry. This follows from the fact that the geometry is
incorporated into the value of the degree of freedom itself.

An important consequence of this separation of the ge-
ometry and topology of the mesh is that certain vector
calculus identities can be satisfied to machine precision.
Specifically, the identities ∇×∇φ = 0 for all scalar func-
tions φ and ∇·∇× ~F = 0 for all vector functions ~F are
precisely reproduced by the discrete operators Tpq , i.e. the
matrix products T12T01 and T23T12 are equal to zero to ma-
chine precision.

For a more complete treatment of discrete differential
forms see [3].

Example Problem
Consider a laser target chamber, which is roughly cylin-

drical with a height of nearly one meter and a radius of
one meter. The chamber also has several port holes for di-
agnostic equipment as well as the input port for the laser
beam. When a high power laser beam enters the chamber
and strikes its target, it will partially vaporize the target and
generate a flux of electrons which are propelled towards the
outer walls of the chamber.

The charge packet in the simulations that will be dis-
cussed consists of 1012 electrons moving at essentially the
speed of light from a target post in the center of the cham-
ber towards the wall on the right in the upcoming images.
The maximum current was 1.5 kA. The packet fans out in
a conical shape as it progresses and has a Gaussian shape
along the direction of propagation with a full width at half
maximum of 3 cm. Therefore we expect the signal to have
significant frequency content out to roughly 4.5 GHz.

We are primarily interested in the pulse of electromag-
netic waves radiated by this charge packet so we do not
model the incoming laser beam or the vaporization of the
target. Also, we do not currently attempt to model the
charge packet as a plasma, it is simply a known charge den-
sity moving through the mesh in a prescribed fashion. This
approximation is valid for this particular problem because
the liberated electrons have very high energies.

SOLUTION TECHNIQUES

Typical E/B Formulation
As mentioned previously a standard E/B formula-

tion [4][5][6] of the problem requires that ~J be approxi-
mated by discrete 1-forms with degrees of freedom on the
edges of the mesh.

∂

∂t

(
ε ~E
)

= ∇× 1
µ
~B − ~J



∂

∂t
~B = −∇× ~E

In discrete form these equations become:

M1(ε)
en+1 − en

∆t
= TT

12M2(µ−1)bn+ 1
2
−M1jn+ 1

2

bn+ 3
2
− bn+ 1

2

∆t
= −T12en+1

Where Mp(α) represents a mass matrix computed using
p-form basis functions and a material parameter α, T12 is
the discrete Curl operator shown in Table 1, and lower case
letters with subscript n, for example, obviously represent
vectors of degrees of freedom at time n∆t.

If we take the divergence of Ampère’s law and make use
of the fact that the charge density is related to the electric
displacement via ∇ · ~D = ρ, we derive the charge conser-
vation equation:

∂ρ

∂t
+∇ · ~J = 0.

In discrete form this becomes:

1
∆t

M0 (ρn+1 − ρn) + TT
01M1jn+ 1

2
= 0

Where ρn is a 0-form, i.e. nodal, representation of the
charge density at time n∆t. The divergence of a 1-form
can only be defined in a weak sense, i.e. as a type of
least squares best fit. Hence this continuity equation for
the electric charge may not be locally satisfied everywhere
although it should be nearly satisfied globally.

Consider the seemingly simple problem of moving a
charge from one node to another along a particular edge
of a mesh as shown in Figure 1. How much current density
should be applied to the edge connecting nodes 0 and 1 to
move all of the charge density from node 0 to node 1? Even

Figure 1: A toy problem illustrating the difficult of moving
a charge density from one node to another using only a
current density on the edge shared by the two nodes.

this simple, two element, problem is over determined and

cannot be solved.

ρn = (ρ̃0, 0, 0, 0)
ρn+1 = (0, ρ̃1, 0, 0)
jn+ 1

2
= (j̃01, 0, 0, 0, 0)

We have two unknowns; the charge density ρ̃1 deposited
on node 1, and the current density j̃n+ 1

2
, but we have four

equations leading to insolubility. This toy problem, even if
it could be solved, would be difficult to efficiently extend
to realistic situations involving charge densities traversing
meshes in three space dimensions.

The simplest method to implement this type of current
source is to simply compute the current density on each
edge as the projection of a prescribed function onto the
edges of the mesh and hope that the continuity equation
will be satisfied closely enough that the errors will not
be noticeable. In many cases this does indeed work well
enough.

(a) Standard E/B Formulation

(b) E/B with Divergence Cleaning

(c) D/H Formulation with PIC Source

Figure 2: The Divergence of the vector field ~D plotted on
a logarithmic scale.

Figure 2a shows an example of a charge density plot for
our model problem. The image clearly shows the charge
packet itself just to the right of center. Unfortunately, it
also shows a large non-physical charge buildup left behind
in the wake of the packet. The boundary of the computa-
tional domain is assumed to be a perfect electrical conduc-
tor so the charge near the boundary can be interpreted as
being related to the surface charge density. This is actu-
ally another oddity of the E/B formulation, surface charges



appear smeared into the volume elements which touch the
surface. This may not be an attractive feature of the image
but at least it has a reasonable physical interpretation.

Divergence Cleaning
The non-physical charge buildup can be removed by per-

forming divergence cleaning when deemed necessary or
perhaps even at every time step. This is the process of
adding something to the field so that its divergence has a
desired value but its curl remains unchanged [7][8][9]. For

the model problem we can add a ~̃J to the source so that the
divergence will match the desired change in charge den-
sity given by ρ̇. We assume that the correction to ~J is the
gradient of a scalar field ψ so that it will have zero curl.

ρ̇ = −∇ · ~J (the computed change in ρ)

ρ̇ = ρ̇+ ˙̃ρ = −∇ · ~J −∇ · ~̃J (the desired change)

∇ · ~̃J = −ρ̇−∇ · ~J (the necessary correction to ~J)
∇2ψ = −ρ̇−∇ · ~J

In discrete form this becomes:

S0ψ = −M0ρ̇− TT
01M1jn+ 1

2

j̃n+ 1
2

= T01ψ

Where S0 is the 0-form stiffness matrix. Each divergence
cleaning operation then requires an additional linear solve
to compute the scalar field ψ. It should be noted that it
is generally more difficult to solve a stiffness matrix than
a mass matrix so obtaining this correction is not a trivial
computation in comparison to updating the electric field at
each time step using Ampère’s law.

With this correction we see that the divergence of ~D,
shown in figure 2b, now matches the desired charge den-
sity. Again, note that the charge density near the surfaces
is due to the presence of a surface charge density.

Unfortunately, this method has a drawback when the
charge density has a velocity near the speed of light. The
correction introduces a small quasi-static field centered on
the charge density, which appears to propagate faster than
the speed of light. Figure 3 shows a logarithmically scaled
contour plot of the electric field magnitude which clearly
shows contours well beyond the charge packet, which is
located near the innermost contour. In figure 2b this com-
ponent of the field can also be seen because it introduces
surface charge densities on the metal object ahead of the
charge packet and on several sharp corners farther away.
These non-physical charge densities are obviously due to
the global solve necessary to compute ψ.

D/H Formulation
Obviously, the difficulties discussed in this paper stem

from the treatment of ~J as a 1-form vector field. Current
density is, however, a flux vector, i.e. the amount of charge
crossing a given area per unit time. Flux vector fields are

Figure 3: Logarithmically scaled contour plot of the mag-
nitude of the electric field computed using the E/B formu-
lation with divergence cleaning.

more naturally described using 2-forms, so we should have
more luck if we approximate Ampère’s law using discrete
2-forms.

∂

∂t

(
µ ~H
)

= −∇× 1
ε
~D

∂

∂t
~D = ∇× ~H − ~J

In discrete form these become:

M1(µ)
hn+1 − hn

∆t
= −TT

12M2(ε−1)dn+ 1
2

dn+ 3
2
− dn+ 1

2

∆t
= T12hn+1 − jn+1

In this formulation the curl of ~D must be computed in the
weak sense. This weak form requires the solution of a lin-
ear system to update ~H using Faraday’s law. In the standard
E/B formulation it is the curl of ~B that must be computed
in the weak sense, requiring a linear solve in Ampère’s law
to update ~E. Normally this linear solve allows us to apply
voltage boundary conditions on ~E where we can specify
that the tangential component of ~E is zero on perfect elec-
trical conductors. In the D/H formulation this constraint
becomes unnecessary because the natural boundary condi-
tion is that the tangential component of ∇× ~H = 0 but, of
course, this equation is consistent with the tangential com-
ponent of ~E = 0 on the boundary (assuming that, on the
boundary, n̂× ~E = 0 at time t = 0 and n̂ × ~J = 0 for all
time.)

Simply treating ~J as a 2-form does not magically solve
all of our problems. What it does is convert our charge
buildup problem from a global least-squares fit into much
more simple local charge conservation problem. Comput-
ing the divergence of Ampère’s law in discrete form now



leads to:
1

∆t

(
ρn+ 3

2
− ρn+ 1

2

)
+ T23jn+1 = 0.

Now our toy problem can be expressed in terms of a charge
moving from one element to another, see Figure 4, by
crossing the face shared by the elements. The problem is

Figure 4: A toy problem illustrating the problem of moving
a charge density from one element to another using only a
current density on the face shared by the two elements.

now well defined.

ρn+ 1
2

= (q0, 0)

ρn+ 3
2

= (0, q1)

jn+1 = (I01, 0, 0, 0, 0)

T23 =
(

1 1 1 0 0
−1 0 0 1 1

)
We still have two unknowns; the amount of charge de-
posited in element 1, and the current crossing the interven-
ing face. However, we now have only two equations(

0
q1

)
+ ∆t

(
I01

−I01

)
=
(
q0

0

)
which in this case stipulate that the current is given by
I01 = q0/∆t and the charge in element 1 is q1 = ∆tI01

or simply q1 = q0. This trivial solution is exactly what
we would expect and it is as simple as our intuition would
suggest.

To extend this solution method to a realistic three dimen-
sional mesh is fairly straightforward. One way to accom-
plish this is to use a particle-in-cell (PIC) technique. For
our purposes a very rudimentary PIC method will suffice.
Simply split up the trajectory of the charge packet into a
group of rays and imagine the charges themselves as beads
moving along these rays. At each time step we compute
the fraction of each charge which crosses each face to com-
pute the total current density. The use of fractional charges
serves two purposes; to smooth out the charge packet even
in coarse meshes, and more importantly to account for ir-
regular mesh spacings. Figure 5 demonstrates a typical sit-
uation.

Figure 5: An example mesh illustrating charge carrying
rays piercing the faces of an irregular mesh. The curved
contours represent the locations at which the current fluxes
must be computed as the charges progress through the
mesh.

To achieve charge conservation we must ensure that the
total amount of charge entering an element equals the that
leaving. The use of rays makes this much easier as we can
then require that the rays will enter and exit each element
through unique faces rather than allowing charges to split
and leave through two different faces. Of course this is a
simplification which would have to be removed in a proper
PIC simulation. The problem of charge conservation then
becomes one of choosing current fluxes Ii(t) which satisfy:

N∑
n=0

Ii(n∆t) =
N∑

n=0

Ij(n∆t)

Where indices i and j indicate any two faces pierced by a
particular ray and T = N∆t is chosen large enough that
the charge packet will have passed both faces by time T
(we must also assume that Ii(0) = 0 for all faces but this
is certainly reasonable.) If we use the first face pierced by
the ray as a reference and label it with index 0 we can then
chose all other current fluxes along that ray to be:

Ii(t) = αiI0(t− ni∆t) + (1− αi)I0(t− (ni + 1)∆t)

Where ni is the integer part of di/(v∆t), αi is the frac-
tional part, di is the distance from face 0 to face i, and v is
the speed of the charge packet. With these choices it is easy
to show that the total current crossing each face along a par-
ticular ray, given by the above sums, must be equal aside
from numerical errors due to finite precision arithmetic.

If enough rays are used and there are enough beads
strung along each ray, then the source will appear reason-
ably smooth. The simulation discussed in this paper re-
quired fewer than 250 rays with 160 charges along each
(i.e. less than 40,000 particles) to achieve acceptable re-
sults. We should emphasize that this does not constitute a
self-consistent PIC simulation. The fields do not effect the
motion of the charge packet in any way. We are simply us-
ing the PIC concept as a bookkeeping scheme to maintain
charge conservation. Although this rigid beam approxima-
tion is valid for our test problem it is not a requirement of
this method. The accuracy, and ease of implementation, of
this method relates to the identification of the degrees of



Figure 6: Logarithmically scaled contour plot of the mag-
nitude of the electric field computed using the D/H formu-
lation with a PIC source.

freedom of ~J with the precise values of the charge fluxes
across the mesh faces. In a more elaborate PIC simula-
tion these fluxes could still be used to precisely balance the
charges within each element although the bookkeeping and
charge balance equations would become more complicated.

Figure 2c shows a charge density plot produced using
this scheme. Clearly the image shows no sign of non-
physical charge buildup. Additionally, the surface charge
density does not appear. A further advantage of this method
is that the charge density and current density on the sur-
face of perfect electrical conductors can be more accurately
computed, if desired. These surface fields can be directly
computed from the surface degrees of freedom for ~D and
~H respectively.

Figure 6 again shows a logarithmically scaled contour
plot of the electric field magnitude, analogous to that shown
in figure 3. However, in the new plot the non-physical,
quasi-static field contours are no longer present. The fields
now properly propagate within a spherical shell which ex-
pands at the speed of light.

CONCLUSION

We have presented an outline for a charge conserving
method of applying transient volumetric current sources to
the Maxwell Equations in the time-domain. Some of the
advantages of using a D/H formulation of the coupled first
order wave equation have been discussed. The ability to
run charge conserving simulations of transient current den-
sities, while optionally computing accurate representations
of surface currents and charge densities, is very appealing.
The added benefit of more easily coupling to a PIC sim-
ulation, capable of more accurately modeling the motion
of the charge packet itself, provides numerous avenues for
enhancing the modeling of similar problems.

It should also be noted that the standard E/B formulation
and the PIC method placed essentially equivalent demands
on computing resources. Each simulation was performed
using the same number processors and ran for virtually the
same length of time. Conversely, the divergence cleaning
procedure, using an algebraic multi-grid solver, increased
the run time by a factor of roughly 2.8.
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